
11-11-21

Challenge the future

Delft
University of
Technology

Introduction to NetLogo and Python

Dr. ir. Igor Nikolic

2SEN1211

Lecture goals

• A guided tour of NetLogo and mesa
• How to learn the tools

3SEN1211

Netlogo

• Open source and free language and development environment for Agent

based Models
• Defacto standard in computational social science, very widely used in

teaching
• https://ccl.northwestern.edu/netlogo/
• inspired by Logo language
• "low threshold and no ceiling"
• open source and free

• https://github.com/NetLogo/NetLogo

• written in Scala, runs in a JVM

4SEN1211

Anatomy of a basic ABM in NetLogo

5SEN1211

NetLogo - useful features
(to read later as you are learning)

• turtle/patch/links/observer - breeds
• globals vs turtles-own vs globals in gui
• to vs to-report
• let vs set
• ask
• List / arrays
• map, reduce, foreach
• matrices and tables
• me vs myself

6SEN1211

turtle/patch/links/observer - breeds
• In Netlogo we have 4 types of agents :

• turtles, patches, links, and the observer.

• Turtles are “normal” agents (network nodes)
• Patches cant move

• Fixed position in the world

• Middle of the screen is 0,0
• Check whether the x,y wrap is enabled or not

• Links are special types of turtles that connect other turtles
• Observer is the model itself (i.e. world/simulation/you)

• Breeds allow you to differentiate between agent types
• breed [wolves wolf]
• breed [sheep a-sheep]

7SEN1211

globals vs turtles-own vs globals in gui

• Globals
• Variables that are accessible to all

• State of the world/environment

• ! Can also be defined in the GUI ! :(

• Turtles own
• Turtle states

• Another turtle can ask for them

• Breeds
• Next to turtles own, that all turtles have, you can have breeds own, that only that

breed has

8SEN1211

to vs to [] vs to-report

• to doAThing
• Functions that do something

• to …. end

• to doAThing [somethingElse]
• Function that does something with somethingElse

• to-report aThing
• Functions that return a value

• To-report …
• report

• end

9SEN1211

let vs set

• Let
• Defines (and possibly sets) a variable in the current scope

• Inside to … end and/or […]

• Set
• Sets the value of a variable

• For both, unusual syntax :
• set/let VARIABLE VALUE

10SEN1211

ask

• Iterates over an agentset
• Turtles/links (all turtles/all links)

• breeds (all turtles of that breed)

• Always randomizes the order of iteration

• You can also ask a single agent

• Ask turtle x [….]

• You can nest asks
• Be careful about

• ask turtles [ask turles […]]

• Always keep in mind who is asking (context)

11SEN1211

Lists

• Very convenient
• Can cheaply change length
• A string “text” is also a list
• foreach command / map reporter are useful, learn them
• List cant not be modified, only overwritten

• set mylist lput 42 mylist

• Carefully read about the list primitives !

12SEN1211

map

• show map round [1.1 2.2 2.7]

=> [1 2 3]

• show map [i -> i * i] [1 2 3]

=> [1 4 9]

• show (

map [[a b c] -> a + b = c]

[1 2 3] [2 4 6] [3 5 9]

)

=> [true false true]

13SEN1211

reduce

• show reduce + [1 2 3]

=> 6

• show reduce - [1 2 3]

=> -4

• show reduce [[ignored next-item] -> next-item] [1 2 3]

=> 3

• show reduce [[result-so-far ignored-item] -> result-so-far] [1 2 3]

=> 1

14SEN1211

foreach

• foreach [1.1 2.2 2.6] show

=> 1.1

=> 2.2

=> 2.6

• foreach [1 2 3] [2 4 6]

 [[a b] -> show word "the sum is: " (a + b)])

=> "the sum is: 3"

=> "the sum is: 6"

=> "the sum is: 9"

15SEN1211

Matrix / table / network extensions

• extensions
• have their own primitives
• don’t play that well with other netlogo features
• use if you really have to

16SEN1211

Self vs myself

• Observer does this
• Ask turtles [set xcor 7]

• Puny turtles! I am the Observer! Obey me! Set YOUR xcor to 7!

• ask turtles with [self != myself]
• [rt who, fd who-of myself]

• Foolish turtles! I am turtle 15! Obey me! If you (self) are not me

• (myself), you must turn right a number of degrees equal to YOUR who number

(who, implies who-of self), then move forward a number of units equal to MY who

number (who-of myself)! I am finished with you!

http://groups.yahoo.com/group/netlogo-users/message/1610

http://groups.yahoo.com/group/netlogo-users/message/1610

17SEN1211

• To go ; observer does this:
• ask patches with [self != patch 0 0]
• [set pcolor blue]
• End

• Insignificant patches! I am the Observer! Obey me! If YOU are not patch 0 0,

turn YOUR pcolor blue! That is all!

18SEN1211

• To go ; observer

• ask patches with [any? turtles-here] ; observer is doing the asking!
• [ask turtles-here ; patches are doing the asking!

• [set color red, jump 2, set pcolor blue]

• set pcolor white] ; observer does the asking

• Observer: Unworthy patches! I am the observer! Obey me! Do this ask clause!

• Patches: Pathetic turtles-here! I am the patch under you! Obey me! Change

color to red! Jump 2 units! Change the pcolor (of the new patch under you)

to blue! That is all!

• Observer: Now, insolent patch! Change your pcolor to white! I am finished with you!

19SEN1211

mesa / python

• Open source and free Library for python
• “goal is to be the Python 3-based counterpart to NetLogo, Repast, or MASON.”

• Relatively new, current version 0.8.7
• https://github.com/projectmesa/mesa

20SEN1211

Anatomy of a basic ABM in mesa

21SEN1211

How to learn tools

• Read the manual / API at least once
• netlogo programing guide

• nelogo dictionary !

• netlogo example modes. DO NOT copy paste, type them in.

• Understand example models on brightspace
• this means, understand every single thing in the code

• yes, it takes forever the first time

• google / ask what you do not understand

• Write out / draw out the logic of the complete model and agent behavior (flowcharts)
• Think about the change, while looking at the drawing
• Implement the change
• Run/test

